L21: Dealing with nuisance parameters

- 1. Go over problems in Exam 3.
- 2. Sufficient statistic and test
 - (1) Definition and factorization theorem

 $X = (X_1, ..., X_n)$ is a random sample from a distribution with joint pdf or pmf $f(x; \eta)$ where η is unknown parameter (vector). Let T(X) be a statistic (vector) and $f_T(\cdot)$, $f_{X|T}(\cdot)$ be pdf/pmf of T and conditional pdf or pmf of X given T.

$$T \text{ is a sufficient statistic for } \eta \iff f_{X|T}(x) \text{ is free of } \eta \\ \iff f(x;\eta) = g_1(x) \cdot g_2(t(x);\eta)$$

$$Proof. \stackrel{*}{\Rightarrow}: f(x;\eta) = f_{X|T}(x) \cdot f_T(t;\eta) = g_1(x) \cdot g_2(t(x);\eta).$$

$$\stackrel{*}{\Leftarrow}: \text{Let } y = \begin{pmatrix} t(x) \\ y_*(x) \end{pmatrix} \iff X = \begin{pmatrix} x_I(t,y_*) \\ x_{II}(t,y_*) \end{pmatrix} \text{ be 1-1 mapping with } J(t,y_*) = \left| \frac{\partial x}{\partial y^T} \right|.$$

$$Then f_T(\cdot) = \iint f_Y(t,y_*) d\mu(y_*) = \iint f(x;\eta) J(t,y_*) d\mu(y_*) = \iint g_1(\cdot)g_2(\cdot)J(\cdot) d\mu(y_*) = g_2(\cdot) \iint g_1(\cdot)J(\cdot)) dy_2, ..., d\mu(y_*) = g_2(t;\eta)g_3(t)$$

So
$$f_{X|T}(\cdot)f_T(\cdot) = f(\cdot) \Longrightarrow f_{X|T}(\cdot)g_2g_3 = g_1g_2 \Longrightarrow f_{X|T}(\cdot) = g_1/g_3$$
 is free of η .

(2) Critical function and sufficient statistic

T is a sufficient statistic for η . For critical function $0 \le \psi(X) \le 1$ with $\beta_{\psi}(\eta) = E_{\eta}[\psi(X)]$ there exists $0 \le \psi_*(T) \le 1$ such that $\beta_{\psi_*}(\eta) \equiv \beta_{\psi}(\eta)$.

Proof. Let $\psi_*(T) = E_{\eta}[\psi(X)|T]$. *T* is sufficient for $\eta \Longrightarrow \psi_*(T)$ contains no η . $0 \le \psi(X) \le 1 \Longrightarrow 0 \le E[\psi(X)|T] \le 1 \Longrightarrow 0 \le \psi_*(T) \le 1$. $\beta_{\psi_*}(\eta) = E_{\eta}[\psi_*(T)] = E_{\eta}\{E_{\eta}[\psi(X)|T]\} = E_{\eta}[\psi(X)] = \beta_{\psi}(\eta)$.

(3) The essence of constructing a test scheme

When constructing a test scheme, there is a sample X with distribution depending on parameter η . The goal is to construct $0 \le \phi(X) \le 1$ such that $E_{\eta}[\phi(X)]$ satisfies a set of restrictions.

But with sufficient statistic T, by (2), this task becomes to construct $0 \le \phi(T) \le 1$ such that $E_{\eta}[\phi(T)]$ satisfies a set of restrictions.

- **Ex1:** The pdf or pmf of sample $X f(x; \eta) = 1 \cdot f(x; \eta)$, By factorization theorem, sample X is sufficient for η . Thus the original version of constructing a test fits the new version.
- **Comments:** Suppose T_1 and T_2 are two statistics, we write $T_1 \leq T_2$ if T_1 is a function of T_2 . Then relation \leq is a reflexive and transitive, and hence is called an order.

If $T_1 \leq T_2$ and T_1 is sufficient for η , then T_2 is sufficient for η . But if T_2 is sufficient, T_1 may or may not be sufficient.

If T is sufficient for η and $T \leq S$ for all sufficient statistic S, then T is the minimal sufficient statistic. Minimal sufficient statistic is the simplest sufficient statistic.

- 3. Nuisance parameter and conditional test
 - (1) Settings

X is a sample from a population with parameter vector $\eta = \begin{pmatrix} \theta \\ \tau \end{pmatrix}$. $\begin{pmatrix} T(X) \\ S(X) \end{pmatrix}$ is a statistic vector. Suppose X has joint pdf or pmf

$$f(x; \theta, \tau) = g_1(x)g_2(t(x); \theta)g_3(s(x); \tau).$$

Then by factorization theorem, $\begin{pmatrix} T \\ S \end{pmatrix}$ is sufficient for $\eta = \begin{pmatrix} \theta \\ \tau \end{pmatrix}$; T is sufficient for θ ; and S is sufficient for τ .

(2) Nuisance parameter when testing on θ

To construct a test on a hypothesis about θ , because T is sufficient for θ , we need to create $0 \le \phi(T) \le 1$ with a set of desired properties on $E[\phi(T)]$.

But the distribution of T depends on both θ and τ ; and $E[\phi(T)]$ is a function of both θ and τ . While θ is the parameter of interest, τ becomes a nuisance parameter. We need to "hide" or "remove" this nuisance parameter.

(3) Conditional tests

Because S is sufficient for τ , the conditional distribution of T given S is free of τ , and $E[\phi(T)|S]$ is free of τ . Thus the nuisance parameter τ is successfully removed by using the conditional distribution given S.

Thus a test with critical function $0 \le \phi(T) \le 1$ satisfying a set of restrictions on $E_{\theta}[\phi(T)|S]$ is called a conditional test.

L22 Conditional tests

- 1. Conditional test on simple H_0 and simple H_a
 - (1) Simple H_0 and simple H_a For $H_0: \theta = \theta_0$ versus $H_a: \theta = \theta_1$ with sample pdf(pmf) $f(x; \theta)$, let $\Lambda = \frac{f(X; \theta_1)}{f(X; \theta_0)} = \Lambda(X)$. Then

$$\phi(X) = \begin{cases} 1 & \Lambda > c \\ r & \Lambda = c \\ 0 & \Lambda < c \end{cases} \text{ with } E_{\theta_0}[\phi(X)] = \alpha$$

is α -level MP test.

(2) Dealing with nuisance parameter

If sample pdf (pmf) is $f(X; \theta, \tau)$, then $\Lambda = \frac{f(X; \theta_1, \tau)}{f(X; \theta_0, \tau)} = \Lambda(X; \tau)$ is no longer a statistic. In such a case one has to assume that there is a sufficient statistic S for τ . Let $\Lambda = \frac{f_{X|S}(X; \theta_1)}{f_{X|S}(X; \theta_0)} = \Lambda(X, S)$. Then

$$\phi(X) = \begin{cases} 1 & \Lambda > c \\ r & \Lambda = c \\ 0 & \Lambda < c \end{cases} \text{ with } E_{\theta_0}[\phi(X)|S] = \alpha$$

is α -level conditional MP test on S.

(3) Making use of sufficient statistic for θ Suppose that T is sufficient for θ and S is sufficient for τ . Let $\Lambda = \frac{f_{T|S}(T;\theta_1)}{f_{T|S}(T;\theta_0)} = \Lambda(T, S)$. Then

$$\phi(T) = \begin{cases} 1 & \Lambda > c \\ r & \Lambda = c \\ 0 & \Lambda < c \end{cases} \text{ with } E_{\theta_0}[\phi(T)|S] = \alpha$$

is α -level conditional MP test.

Comment: Because $\Lambda = \Lambda(T, S)$, in essence the critical function $\phi = \phi(T, S)$.

Ex1: If $f(X; \theta, \tau) = g_1(\theta, \tau)g_2(X)g_3(\theta, T(X))g_4(\tau, S(X))$, then by factorization theorem, T(X) is sufficient for θ and S(X) is sufficient for τ .

Let $y = (t(x), s(x), y_*(x)) = y(x) \iff x = x(t, s, y_*) = x(y)$ be 1-1 mapping with $J(t, s, y_*) = \left|\frac{\partial x}{\partial y^T}\right|$. Then the pdf (pmf) for $Y = (T, S, Y_*)$ is

$$f_{(T,S,Y_*)}(t, s, y_*; \theta, \tau) = g_1(\theta, \tau)g_2(t, s, y_*)g_3(\theta, t)g_4(\tau, s)J(t, s, y_*).$$

By the integration or summation over y_* , the pdf (pmf) for (T, S) is

$$f_{(T,S)}(t, s; \theta, \tau) = g_1(\theta, \tau)g_3(\theta, t)g_4(\tau, s)h(t, s).$$

By integration or summation over t, the pdf (pmf) for S is

$$f_S(t, \theta, \tau) = g_1(\theta, \tau)g_4(\tau, s)h_S(\theta, s).$$

Thus the conditional pdf (pmf) of T given S,

$$f_{T|S}(\cdot) = \frac{f_{(T,S)}(\cdot)}{f_{S}(\cdot)} = g_{3}(\theta, t)h(t, s)/h_{s}(\theta, s)$$

is a function of t, depends on s and θ , but is free of τ .

2. Conditional test with upper-sided H_a

(1) Upper-sided H_a

For testing on H_0 : $\theta \leq \theta_0$ versus H_a : $\theta > \theta_0$, the monotone likelihood ratio in T(X), i.e.,

$$\theta_1 < \theta_2 \Longrightarrow \frac{f(x; \theta_2)}{f(x; \theta_1)}$$
 is an increasing function of $T(X)$

is required. Under this assumption

$$\phi(T) = \begin{cases} 1 & T > c \\ r & T = c \\ 0 & T < c \end{cases} \text{ with } E_{\theta_0}[\phi(T)] = \alpha$$

is α -level UMP test.

(2) The problem with nuisance parameter If $f(x; \theta, \tau) = g_1(\theta, \tau)g_2(x)e^{r(\theta)t(x)}g_4(\tau, s(X))$ where $r(\theta)$ is an increasing function, then

$$\theta_1 < \theta_2 \Longrightarrow \frac{f(x;\,\theta_2,\,\tau)}{f(x;\,\theta_1,\,\tau)} = \frac{g_1(\theta_2,\,\tau)}{g_1(\theta_1,\,\tau)} e^{[r(\theta_2) - r(\theta_2)]t(x)} \text{ is an increasing function of } T(X)$$

But $E_{\theta_0}[\phi(T)]$ dependes on τ . Hence $\phi(T)$ in (1) can not be established.

(3) Conditional test

By factorization, S(X) is sufficient for τ . Hence the distribution of T given S is free of τ . Thus $\phi(T)$ with $E_{\theta_0}[\phi(T)|S] = \alpha$ is a conditional UMP test.

Ex2: With $g_3(\theta, t) = e^{r(\theta)t}$ where $r(\theta)$ is an increasing function, by Ex1,

$$f_{(T,S)}(t,s;\theta,\tau) = g_1(\theta,\tau)e^{r(\theta)t}g_4(\tau,s)h(t,s)$$

So $f_T(t; \theta, \tau) = g_1(\theta, \tau)e^{r(\theta)t}h_t(\tau, t)$ depends on nuisance τ . **Ex3:** By Ex1, $f_{T|S}(t; \theta|s) = e^{r(\theta)t}h(t, s)/h_s(\theta, s)$. Thus

$$\theta_1 < \theta_2 \Longrightarrow \frac{f_{T|S=s}(t;\,\theta_2)}{f_{T|S=s}(t;\,\theta_1)} = \frac{h_s(\theta_1,\,s)}{h_s(\theta_2,\,s)} \; e^{[r(\theta_2)-r(\theta_1)]t} \text{ is an increasing function of } T.$$